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INTRODUCTION

Theoretical investigation of the breakdown of an isolated

vortex has been conducted before (Refs. 1 and 2). However, its

application to slender-wing aerodynamics is quite limited in

scope and versatility (Ref. 3). In fact, very few correlations

with data have been reported. In addition. these available

theoretical methods require lengthy computer time and hence,

ire not suitable for applications in a preliminary design.

In this paper, a semi-empirical method to predict effects

of vortex breakdown on aerodynamic chr.racceristics of slender

wings is described. The method is based on Polhamus' method

of suction analogy. Hotl y longitudinal and lateral-directional

characteristics can be predicted.

THEORETICAL DEVELOPMENT

In the method of suction analogy, the vortex lift is equated

to the edge suction force in the attached flow. It was observed

by Lamar (Ref. 4) that for delta wings the angles of attack for

vortex breakdown at the trailing edge ( a( WTI) can be related

to the leading-edge suction distribution ( Cr (: ). For	 a large

°( an TO , the Cs C - 
distribution tends to peak out at a more

outboard location (Fig. 1). However, the location of ( Cs C )M kx

itself is not a good correlation parameter because for lower swept

wings, such as the 60-deg. delta, th peak location is less

distinguished.

k
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Therefore. the method to be developed must (1) employ a good

correlation parameter for o(gg TE applicable to most planforms,

not just delta wings; (2) be able to predict the progression of

the breakdown point when et> e'(gsrt ; and (3) predict the amount of

remaining vortex lift in the region of breakdown. These are

described in the following for both longitudinal and lateral-

directional aerodynamics.

Lonaitudinal Aerodvnamics

Let
qG

C'	 c sm &,a<
	

(1)

where G is the mean aerodynamic chord. Since Cs is proportional to

sieae( , it follows that Cr is a function of planform and Mach
number only. If Z is the nondimensional centroid location of the

Cs - distribution from inboard to 1 4 ? ib%* it was found that

Yj	 correlated well with experimental *( Ip rs as shover. in Fig. 2.

The relation between it and it is illustrated in Fig. 1. The

experimental a s jorp are taken from Reference S. The correlation

curve in Fig. 2 was obtained by a least -square analysis of Wentz

data (Ref. S) and can be described as follows.

°c EO rE = 1C/fit — 13.134L .V + 6x1171'-33.017:
(2a)

a( •sTE 2 390 Jsd.	 *Ff 7 ^•S'	 (2b)

In Reference 5, the progression rate of the breakdown point

on delta wings was also measured. Note that the progression rate
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measured in the water tunnel is somewhat different from that in

the wind tunnel (Ref. 6). Although the experimental progression

rate is slightly different for different delta wings (Fig. 3), for

simplicity, a single curve obtained by a least -square analysis of

Wentz data is used in the present analysis. The curve can be

described by

AX = g,ft'Is 4t - ^r ►t (sat)'t 0.•j•j t^^)3 - a••a f ^a .t)4

°x = 4t=?.1 t R•»(	 Jai.	 (3b)

where •.(: oc - st s#re , Jy 	 (4)

and e 3 is the nondimensional it-  distance (referred to the root

chord) from the trailing edge to the breakdown point. The spanwise

location of the breakdown point, Y., , nondimensionalized with half

span. can therefore be obtained as

pia
	 (5)

Once the vortex - breakdown point is located on the planform,

it is necessary to determine the amount of remaining vortex lift

after breakdown. It is well known that the vortex strength after

breakdown is decreased, but not vanished. In other words, the

sectional CS C at any spanwise station fi > rs a	 must be

multiplied by a factor A which is less than 1.0. To determine i

Wentz data for delta wings were analyzed at ° Gi • 'deg. and compared

with results by the Quasi-Vortex-Lattice Method (QVLM) (Ref. 7).

The factor 16 is determined by requiring the QVLM results to match

Wentz data as closely as possible through a least-square analysis.
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The results are

4 s *.li/ t 0. 8t44 , V & < of
s ^t^t/- A a•^,^j t •,s a i V if	 72 (6)

The results indicate that different planforms (i.e. different rf )

have different vortex characteristics after breakdown.

Lateral-Directional Aerodynamics

It was shown in Refs. 8 and 9 that in a sideslip, the leading-

edge vortex on the windward side is pushed inward and downward,

thus inducing additional vortex lift; while on the leeward side, it

is pushed outward and upward, and thus inducing less vortex lift.

Note that the usual vortex lift, as explained through the suction

analogy, is produced by the existence of net upwash at the leading

edge, thereby inducing vortex separation. This is called the roll-up

type of vortex lift in the present analysis. On the other hand,

at a given of the sideslip does not change the net upwash at the

leading edge. Therefore, to account for the increase in vortex lift

on the windward side due to sideslip, a "displacement-type" vortex

lift must be introduced. The flow mechanisms and computational

methods for sideslip, yawing and rolling motions are described below.

(1) Vortex lift of the displacement type in sideslip

In general, the leading-edge thrust coefficient is given by (Ref. 10)

et :	 C1 cos^j,—	 (7)1

where /, is the leading-edge sweep angle, and C is the leading-edge

L.
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singularity parameter defined as

C AA
J.
 ' 4  {^ ^ s()

Now, in sideslip, A Cr ie given by (Ref. 11)

-4 =1 A( ) =20(	 f	 sty',W a^i t ^Yx f
t9)

where X1 is the X -coordinate in the freestream direction and Yz , is

are the components of vortex density in the X - and 'Y - directions,

respectively. The component, YI , is responsible for the longitudinal

loading. Since the vorticity vector near the leading edge must be

parallel to the leading edge, it follows that

Yx oa ry 11!4n Aj	 (10)

near the leading edge. Hence, by substituting Eqs. (9) and (10) into

(8), it is obtained that

(11)

where

M M	 ^--G	 •^ ^ Itj
(12)

is the leading edge singularity parameter due to el for the symmetrical

loading. Eq. (11) shows that the singularity parameter due to sideslip

can also be interpreted as that produced by the interaction between Jrx

and the sideslip velocity at the leading edge:

C	 40-in	 Wm
e	 Z-V*	 c	 f	 (13)
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By squaring Eq. (11) and substituting it into Eq. (7), the leading-

edge thrust coefficient in sideslip can be obtained:

^t Gi ( #	 At st,^ f t t,swsA f 	 M'e^s ;1,
=	 s SW 4

(14)

The resulting thrust is in the direction pointing into the sideslip

velocity (Fig. 4a). Hence, the corresponding suction coefficient

( Cit e) ) is

., ( :t	 + Ibm At , )
(15)

where

1[
Yr c -_ ^Wlgosz*

Ctrs) ' -osx4j
(16)

is the auction coefficient for the symmetrical loading.

(2) Vortex lift of the displacement type in yawing

As shown in Fig. 4b, the induced sidewash at (2fj 1) is

x-x	 —	 r4
(17)

This sidewash varies over the planform, and hence gives rise to

"variable sideslip" effect. According to Eq. (15), the corresponding

suction coefficient ( Cstr) ) is then

a
Cs^ p = Grr.^^ 

f ^r t ^r it-on Al
(18)

(3) Regions without potential flow effect

In the method of suction analogy, the vortex lift is added to

the potential-flow lift to obtain the total lift. The potential-

flow lift is calculated by summing all attached -flow pressure forces

W..
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over the planform. This is used for the situation in which a vortex

flow of the roll-up type is involved, such as in tae symmetrical

loading or due to rolling motion. For a vortex flow of the dis-

placement type, a certain region near the edges has to be excluded

in calculating the potential-flow component to avoid over-prediction.

According to Reference 12, the magnitude of ev C gives a good

estimate of the location of vortex lift centroid from the leading

edge. Hence, Cetr) C and Cs(r) C are taken to be the streamwise

distances measured from the leading edge to the vortex lift centroids

for f and Y' modes of motion, respectively. In the present method,

regions near the leading edge with X- Xt :11.0  (4 0 are assumed

not to have the potential-flow effect. However, if the vortex

breakdown is predicted to occur, the vortex flow region tends to

enlarge, so that the symmetrical ( Cs C ) will be used.

(4) Boundary layer effect on Roll Damping

The rolling motion induces a change in local angle of attack

so that the roll-up type vortex lift will be produced. Its calculation

is described in Reference 7.

However, it is known that the conventional attached-flow

theory tends to over-predict the roll damping by as much as 20%

without accounting for the vortex flow (Ref. 13). One possible

reason is that the boundary layer near the wing tip is thickened

by the centrifugal effect in rolling, so that the effective angle

of attack is reduced. For engineering applications, this effect

will be accounted for in the following way.

Note that the boundary layer thickness is a function of skin

T.



friction coefficient ( Cf ). In Reference 14, a formula for the

airfoil lift reduction due to boundary layer thickness is given as

Aq W
Cj
	

(19)

where if" was chosen as 2.0. For a wing in steady rolling, it is

assured that Eq. (19) is applicable at the station of mean aerodynamic

chord (MAC). According to Reference 15 (page 599), the thickness of

a 2-D turbulent boundary layer can be written: as

^t

(20)

where 7rt indicates that s,. is to be calculated at the trailing

edge and A) is the kinematic viscosity. It follows that the slope

of boundary layer is given by

7^s a 0.3 Q X T 'ixi t ( 3)^V.s ^Vr

(21)

According to Ref. 15(page 601), the boundary layer thickness on a

rotating disk is given by

is W 0.S4,i -4/t (^ ^t4)Yt	
(It2)

where	 in the present application is taken to be the y - coordinate

of MAC and W is the rotating speed. It follows that

t	 4	 ^r

y	 (23)

As shown in Fig. 5. in the present 3 - D applications, 
Jfa

is taken normal to the trailing edge. The ef fect of steady rolling

is regarded as a small perturbation to the angle -of-attack effect,

8.



so that only its component along the trailing e?.ge will be accounted

for. The angle, ft , for the direction of combined slopts is

then given by

At	 06 0 x ^^sAt	 ^

Hi
(24)

However,

VM	
(25)

Hence,

v..xt	 W.0 xt	 b^, -xt
is 94-

F(4- 3'vs	 P	 (26)

Substituting Eq. (26) into Eq. ( 24), it is obtained twat

^11 r{= /.a`c^40s 4^^ wr^ ^

	

T l ? )	 (27)

where

xt c ces At
(28)

It is assumed that if Eq. (19) is for the angle -of-attack

effect, then the combined effect . given by Eq. (19), is increased

by a factor of 11"S ft with ft given by Eq. (27). With the local

angle of attack due to steady rolling. alt , replacing 4, in Eq. (19).

Eq. (19) is now rewritten as

d	 ^— 7 `f a.s f

wherZ the constant R' is taken as 2.2, instead of 2.0, for a better

(29)
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correlation with data, and OW& is included for the notching

effect of the trailing eOge. That ie, the component, =
shown in Fig. 5 will make thA trailing -edge boundary layer thinner.
(5) Rolling and yawing at non-zero sic',-.slip

It was shown in Reference 8 that the roll damping of a slender

wing at high angles of attack ca- be increased if the wing rolls

about the stability axes at a non-zero sideslip. To expltin this

effect, let the total. leading-edge singularity parameter be
C C,c (/ tim A, VO ^ ^ t G^ ( f Pr y A + C r) + Gt/^ 3

where	 Cc^ and (;;) are leading-edge singuJarity parameters

produced by upwash ( i.e. the roll -up effect), respect 'vely. By

squaring C to be used in Eq. ( 7), various cross-product terms appear.

For the rolling motion, the vortex lift due to roll-up is further

increased on the right wing due to inboard displacement of vortex

core in positive sideslip. Similarly, any roll -up effect in the

yawing motion will be further increased or decreased due to sideslip.

However, products of any two roll-up effects or displacement effects

do not produce forces and moments of the antisymmetrical nature.

Hence, additional vortex-lift terms in the leading-edge singularity

parameter due to rolling and yawing in sideslip are

Cir') = 1 Ccr.) (Cr tin Al so" f	 (31)

C 1	 Gs 1 tr) ( Cc ta" A.1 Six 	(32)

Eqs. (31) and (32) are to rap. : _e C2 in Eq. ( 7) to produce the

additional leading-edge thrust.

^t
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(6) Vortex breakdown in sideslip

In general, the angle of attack :or vortex breakdown at the

trailing edge in sideslip, d #xrs , is reduced on the windward

side and increased on the leeward side. The following steps are

used to calculate ei *nE in the present analysis.

(a) Calculate ^l from the symmetr'cal suction distribution

( Cs (.1)
	

), except that the leading-edge sweep angle

is taken to '%e 4.1 — f for the right wing and À  +

for the left wing.

(b) Assume that the maximum vortex strength before breakdown

for a given planform is unchanged by sideslip. Since

the vortex strength is represented by Gs which is

proportional to ain se( , it follows that the maximum

vortex strength will be reached at a lower o('than *(tars

on the right wing because of increase in vortex_ lift

in sideslip. Hence, d jaTe can be salved from the

following equation

as 1^sgavCie70	 fiAa^^s'TE t ^* 3	 ih/.^ r / s'i„'d” ^g3^

(c) The vortex lift factor ( ,* r ) is calculated by the same

formula for if (i.e. E q . (6)), except thatỲ  is

replaced by 
gee) 

calculated in step (a).

(d) Whenever the vortex breakdown is predicted to occur at

a given y station. Cs ut) 
must be multiplied by jj.

Therefore, the antisymmetrical vortex lift on the windward

side due to sideslip .would be given by

5c^ry^ t 2 C^ f«^ ^ 
sir { , 

]^f
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On the leeward side, the vortex breakdown may not occur at a given a .

In this case, the magnitude of the antisymmetrical vortex lift is the

U	 average of those on both sides.

(7) Vortex breakdown in yawing

1 '

	

	 The effect of yawing on vortex breakdown is similar to that due

to sideslip. With a positive yawing. the left tip will be the first

which is subject to possible vortex breakdown effect. Since the equi-

valant sideslip (&) is variable along the leading edge, the average of

Fr at a given y station and that at the tip is used to determine p(BDTE'

For simplicity , a(BDTE for the ya!Ang motion is determined by a linear

interpolation between CAand a("	
for sideslip.

When the yawing motion occurs at C # 0, the equivalent sideslip to be
used should be 1- fr on the left wing and P + f r on the right wing. Since re
is usually negative near the tips, the equivalent sideslip there is con-

siderably reduced. In this case, the vortex breakdown may not occur,

in particular at a high yaw rate, so that the rolling moment due to

yaw rate may be large.

(8) Vortex breakdown in rolling

Due to a positive roll, the local angle of attack on the right

wing is increased. It would seem that the vortex-breakdown o! would

be decreased. However, rolling tends to move outboard the centroid of

the vortex lift distribution (i.e. increasing yl), so that the vortex-

breakdown o[ is increased. In the present theory, it is assumed that d;DTE

for the rolling motion is equal to d BDTE for the symmetrical loading.

The average of the local K at a given y station and that at the

tip is used to determine whether there is vortex breakdown at that

station.

M
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(9) Centroids of vortex lift

Based on the idea developed in Reference 12, c a c gives the location

of vortex lift centroid. Let leading-edge suction coefficients produced

by upwash at the leading edge be denoted by cs (p) , c9 (, ) and ca (r) . The

roll-up for the antisymmetrical vortex lift is assumed to take place along

a direction perpendicular to the leading edge. Hence, the antisymmetrical

vortex lift of the roll-up type is assumed to act at

" '.:9(p) C I Sia At
for the rolling motion, and at

Y	 I es"
r) c I $;I Ae

for the yawing motion. In sideslip, it is at

7— 1-'r)e 	 c i c.s p

This is illustrated in Fig. 6a.

On the other hand, if rolling and yawing motions take place in a

non-zero sidesliF, the vertex lift centroids will he at

c t 4 C

Al

For rolling and vowing motions, the inboard displacement of vortex

lift centroids is further restricted by the position of symmetrical vortex

lift centroids (i.e. R - c sc). Therefore, if

IG,e,,ae I to Al > R "s At s':h 4,1

it is replaced by R cox/ysinn^, Where R cannot exceed the local chord.

This is illustrated in Fig. 6b.

In a coning motion, rolling and vawing motions are coupled. The

vortex lift centroid is then assumed to be that due to the rolling

motion.

13.
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NUMERICAL RESULTS

Longitudinal Characteristics

Results for delta wings of 60 0 , 700 and 800 are presented in Figs. 7-

10. The method for computing the vortex lift involving rounded leading

edges is based on Kulfan's concept (Ref. 16). Note the differences in

lift curves after vortex breakdown for different delta wings. The

lift curve for the 80-deg. delta has a sharper change after vortex

breakdown as compared with that for the 60 -deg. delta. The lift curve

for the 70-deg. delta wing represents the transition between these two

types.

Lateral-Directional Characteristics

The effect of sideslip on the angle of attack for vortex breakdown

at the trailing edge is presented in Fig. 11. The trend is correctly

predicted, although the predicted magnitude is 2 to 3 deg. off.

The lateral characteristics for 60 -deg. and 70-deg. delta wings

are presented in Figs. 12 and 13, respectively. The predicted results

agree well with data, except when a(exceeds a BDTE by 8 to 10 deg. In

the latter situation, the effect of boundary layer separation must be

accounted for and is not included in the present method.

Additional results are compared with data in Figs. 14, 15 and 16.

As shown in Fig. 15, the bounda ry layer correction is seen to be impor-

tant for accurate prediction of roll damping. The change in slopes of

C^ and C., after vortex breakdown is due to the difference in breakdown

P	 f
ac t s for left and right wings.

Finally, the effect of sideslip on roll damping is illustrated in

Fig. 17. With zero sideslip, the slope of % -p curve is alwa ys positive.

This means that Ct is positive. On the other hand, as the sideslip is

P
increased in a steady roll, Ct may become negative, as shown by the curve

P
14.
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